Langevin, population density and moment-based modeling of local and global aspects of intercellular calcium signaling
نویسنده
چکیده
Markov chain models of the coupled gating of intracellular calcium (Ca 2+) channels are often used to study the stochastic dynamic of local Ca2+ release events and whole cell Ca2+ homeostasis. However, the runtime of the Markov chain description of Ca2+ channel gating is exponential in the number of Ca2+ channel states and may thus result in a combinatorial state space explosion when the number of channel states is large. This dissertation presents several novel stochastic modeling approaches that capture important aspects of Ca 2+ signaling while improving computational efficiency. This dissertation presents several novel stochastic modeling approaches that capture important aspects of calcium Ca2+ signaling. First, we present a Ca 2+ release site modeling approach based on a Langevin description of stochastic Ca2+ release. This Langevin model facilitates our investigation of correlations between successive puff/spark amplitudes, durations and inter-spark intervals, and how such puff/spark statistics depend on the number of channels per release site and the kinetics of Ca2+ -mediated inactivation of open channels. Second, we show that when the Ca2+ channel model is minimal, Langevin equations in a whole cell model involving a large number of release sites may be replaced by a single Fokker-Planck equation. This yields an extremely compact and efficient local/global whole cell model that reproduces and helps interpret recent experiments investigating Ca2+ homeostasis in permeabilized ventricular myocytes. Last but not least, we present a population density and moment-based approach to modeling L-type Ca2+ channels. Our approaches account for the effect of heterogeneity of local Ca2+ signals on whole cell Ca currents. Moreover, they facilitate the study of domain Ca-mediated inactivation of L-type Ca channels.
منابع مشابه
A probability density approach to modeling local control of calcium-induced calcium release in cardiac myocytes.
We present a probability density approach to modeling localized Ca2+ influx via L-type Ca2+ channels and Ca2+-induced Ca2+ release mediated by clusters of ryanodine receptors during excitation-contraction coupling in cardiac myocytes. Coupled advection-reaction equations are derived relating the time-dependent probability density of subsarcolemmal subspace and junctional sarcoplasmic reticulum ...
متن کاملCalcium homeostasis in a local/global whole cell model of permeabilized ventricular myocytes with a Langevin description of stochastic calcium release.
Population density approaches to modeling local control of Ca(2+)-induced Ca(2+) release in cardiac myocytes can be used to construct minimal whole cell models that accurately represent heterogeneous local Ca(2+) signals. Unfortunately, the computational complexity of such "local/global" whole cell models scales with the number of Ca(2+) release unit (CaRU) states, which is a rapidly increasing...
متن کاملA population density and moment-based approach to modeling domain Ca-mediated inactivation of L-type Ca channels
We present a population density and moment-based description of the stochastic dynamics of domain Ca-mediated inactivation of L-type Ca channels. Our approach accounts for the effect of heterogeneity of local Ca signals on whole cell Ca currents; however, in contrast with prior work, e.g., Sherman et al. (1990), we do not assume that Ca domain formation and collapse are fast compared to channel...
متن کاملModeling human population patterns on tree density
In order to evaluate the possible correlation between the tree density and the human population density, the forested area in Nav Asalem district located in Guilan Province was selected. The descriptors of tree number and basal area per hectare as well as the stand density index were used to determine the tree density, which was conducted from a 2014 forest inventory including 62 cluster (558 p...
متن کاملA Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کامل